
SPPS: Secure Policy-based Publish/Subscribe
System for V2C Communication

Mohammad Hamad∗, Emanuel Regnath∗, Jan Lauinger∗, Vassilis Prevelakis† and Sebastian Steinhorst∗
∗ Technical University of Munich, Germany, Email: firstname.lastname@tum.de

†Technical University of Braunschweig, Germany, Email: prevelakis@ida.ing.tu-bs.de

Abstract—The Publish/Subscribe (Pub/Sub) pattern is an at-
tractive paradigm for supporting Vehicle to Cloud (V2C) com-
munication. However, the security threats on confidentiality,
integrity, and access control of the published data challenge
the adoption of the Pub/Sub model. To address that, our
paper proposes a secure policy-based Pub/Sub model for V2C
communication, which allows to encrypt and control the access
to messages published by vehicles. A vehicle encrypts messages
with a symmetric key while saving the key in distributed shares
on semi-honest services, called KeyStores, using the concept
of secret sharing. The security policy, generated by the same
vehicle, authorizes certain cloud services to obtain the shares
from the KeyStores. Here, granting access rights takes place
without violating the decoupling requirement of the Pub/Sub
model. Experimental results show that, besides the end-to-end
security protection, our proposed system introduces significantly
less overhead (almost 70% less) than the state-of-the-art approach
SSL when reestablishing connections, which is a common sce-
nario in the V2C context due to unreliable network connection.

Index Terms—Secure Pub/Sub Model, V2C Communication

I. INTRODUCTION

Today, vehicles are equipped with many smart sensors that
collect a vast amount of data. V2C communication will allow
vehicles to benefit from cloud computation power to handle
this processing via different services in order to enhance the
intelligent transportation system. V2C communication faces
many challenges, such as the unstable connectivity with cloud
services and the need to communicate securely with many
services owned by different authorities. The Pub/Sub model is
a communication paradigm that enables a sender, known as a
publisher, to disseminate messages to multiple receivers, known
as subscribers, at once via a mediator, known as a broker. The
Pub/Sub pattern provides full decoupling in time, space, and
flow between publishers and subscribers, which are important
properties of distributed systems. These characteristics make
the Pub/Sub model an excellent candidate to implement V2C
communication. However, in terms of security, the Pub/Sub
model is susceptible to a wide variety of security threats
that affect the confidentiality, integrity, and access control
of published data [1].

The privacy-related data published by cars requires strict
restrictions on who is permitted to access this information and
how long it should be stored. Therefore, a vehicle may need
to encrypt this data to ensure that only authorized parties can

This work is partially supported by the Technische Universität München –
Institute for Advanced Study, funded by the German Excellence Initiative and
the European Union Seventh Framework Programme under grant agreement
no 291763 and by the European Commission through the following H2020
projects: nIoVe under Grant Agreement No. 833742, THREAT-ARREST under
Grant Agreement No. 786890, and CONCORDIA under Grant Agreement No.
830927.

CA1

Root of Trust

Pubc

CA

Request
Sub1Subs Sub2

Trust Path

BR

KeyStores

ks1 ks2 ksN

c = Enc(m,msgK)

c

s
h
a
r
e 1

sh
a
re

2

sh
ar

eN

shares(m
sgK)

C
R

1

CR2

C
R
3

Figure 1: High-level system architecture: The vehicle (publisher)
encrypts messages with a message key, which authorized subscribers
can obtain from KeyStores.

access this data for a specified time. Achieving such a level
of access control on published data requires that each vehicle
needs to negotiate with every cloud service and to agree on
one crypto key to be used to secure the data. However, this
solution violates the decoupling requirement of the Pub/Sub
system. Another adopted way to provide security for the
Pub/Sub model is by assuming the broker as a trust component.
This allows vehicle and cloud service to set up a secure link
(e.g., using SSL/TLS) individually with the broker. However,
this solution does not provide end-to-end security and suffers
from significant overhead due to re-establishing the secure
link each time the connection is lost or closed [2]. Other
solutions, such as Attribute-Based Encryption [3] were adopted
recently by several researchers (e.g., in [4]). ABE is public-
key encryption (asymmetric) that ensures a fine-grained access
control mechanism to encrypted data based on flexible access
policies. However, adopting such a solution comes with a
significant overhead with regard to execution time [5].

Contributions

This paper proposes a secure Pub/Sub system to ensure
end-to-end secure communication between cars and cloud
services without trusting brokers (see Figure 1). The proposed
solution uses semi-honest services, so-called KeyStores, to
save secret shares provided by a car. These secrets are used by
each authorized cloud service to reconstruct a symmetric key
generated by the vehicle and used to encrypt the published data.
Each vehicle has the capability to define a security policy that
determines the conditions which allow certain cloud services
to retrieve the shared secret from each KeyStore (see Section
III). Only subscribers who have adequate security policies
(credentials) can retrieve the saved shares from the KeyStores,
reconstruct the key, and decrypt the messages. Our solution
does not require any prior interaction or agreement between
the vehicle and cloud services. In particular, we

• propose a policy-based secure Pub/Sub model for V2C
communication that enables a car to share its data securely
and control who can access published data without trusting
brokers (Sections III and IV).

• implement our proposed system and empirically evaluate
it using embedded devices to compare its performance
with other approaches. The performance analysis indicates
that our solution introduces very little overhead while
outperforming the state-of-the-art approaches by 70%
when reestablishing connections (Section V).

II. SYSTEM AND THREAT MODEL

A. System Components

As shown in Figure 1, our system contains (1) vehicles which
want to share information. Each vehicle Pubc has a public
pubKc and private privKc key and can publish messages
on different topics t1, t2, . . . , tz . (2) Cloud services that
subscribe and receive messages published by Pubc. Each
cloud service Subj is interested in certain information (i.e.,
topic) and belongs to a certain authority (e.g., city, commercial
organization, etc.). Each Subj is (or can be) authorized to
receive messages published on one or more topics based on
the credential(s) it has. (3) A Certificate Authority (CA) which
issues credentials to intermediate CA(s) or to a subscriber
Subj to authorize it to receive certain information based on
the properties that Subj has. (4) A KeyStore component ks
which is used to store the secret keys. We refer to the set of
all KeyStores as KS (KS = {ks1, ks2, . . . , ksN}; |KS| = N).
Each ks has a public pubKks and private privKks key. (5) A
broker (BR) which forwards messages published on topic t to
the subscribers who are interested in this topic. Also, it can
forward these messages to neighboring brokers to ensure the
availability of the data. For simplicity, we will consider using
one Pubc and one BR.

We refer to the shared key between Pubc and ksi as master
key msrKPubc−ksi ∈ {0, 1}λ and to the key which is used
to encrypt the published messages as message key msgK ∈
{0, 1}λ where λ refers to the key’s size. A nonce (nc) is a
unique value which has not been used before. We define the
encryption function Enc to translate a plain text p into a cipher-
text c using a key k as c = Enc(p, k). Accordingly, we define
the decryption function Dec to translate c into p using k as
p = Dec(c, k). Based on the applied k, we can determine
whether the encryption/decryption function is a symmetric
or asymmetric one. We further define a hashing function H
to produce the hash value h ∈ {0, 1}l (l is a fixed length)
of p as h = H(p). HMAC is a function used to produce
a keyed hash value mac of p using a symmetric key k as
mac = HMAC(p, k). The Sig function is used to sign p
using a private key privK while the V er function uses the
associated public key pubK to verify the produced signature
of p as V er(.) ∈ {0, 1}. We use || for concatenating messages
and ⊕ for XOR operation. A function Cmp(x, y, z) ∈ {0, 1}
is defined to compare whether a⊕ b == z (return 0 if is true).
We use Alice&Bob–notation to describe our security protocol.
E.g, A → B : m is read as A sends a message m to B and
A : X is read as A performs X .

CA

CA2CA1

Sub2 Sub3Sub1

co
n
d 2

:

S
rv

=
=

sr
v 1 S

rv
=
=

srv
2

co
n
d 3

:

L
o
c
=
=

l 1

L
o
c
=
=

l
2

L
o
c

=
=

l1

cond1 : Loc == l1 && Srv == srv1 && Time < time1

CR1

CR2

CR3

Pubc

Authorizer: pubKPubc
Licensee: pubKCA
Condition: cond1

Authorizer: pubKCA
Licensee: pubKCA1
Condition: cond2

Authorizer: pubKCA1
Licensee: pubKSub1
Condition: cond3

Tr
us

te
d

RoT

Figure 2: Security credentials.
B. Threat Model

This work assumes that the CA is fully trusted and will not
issue credentials to untrustworthy subscribers or intermediate
CAs. We also consider that a vehicle is honest and will not
publish malicious messages to disrupt the broker or subscriber
functionalities. Both KeyStores and broker are considered semi-
honest. They will perform the protocol correctly, but they will
attempt to get the content of published messages and crypto
keys. Subscribers are assumed to be malicious in the sense that
they are interested in all published information. Each Subscriber
can collude with other system components (i.e., broker and
KeyStores). We also consider that an external attacker can
only access, delay, and store all transmitted messages in the
system without dropping them (handling Denial of Service
(DoS) attacks is out of the scope of this paper). Finally, we
assume that all crypto keys are stored in a secure way such
that an external attack cannot extract them in a reasonable
time.

III. POLICY-BASED TRUST MANAGEMENT

This section details how each vehicle can create a security
credential to define which cloud services are authorized to
retrieve the symmetric key from KeyStores and decrypt the
data. We consider an example where a vehicle shares traffic flow
information that a cloud service can use to support dynamic
routing. These published messages could include information
that could be used to trace the vehicle if malicious services
accessed it. Therefore, a car is interested in keeping its data
secret and ensures that only services that analyze the data for
dynamic routing (Srv == srv1) and are responsible for the
area where the car is traveling (Loc == l1) can access this
data for a specific period (Time < time1). Any other services
should not be able to retrieve the published messages.

We adopt the KeyNote policy definition language [6] to
create security credentials that express trust relations between
different components. As shown in Figure 2, each credential
contains information about the entity granting the authorization
(Authorizer), information about the recipient of the authoriza-
tion (Licensee), and the condition under which the Authorizer
trusts the Licensee to perform an action. We refer to each
credential as CRAuthorizerLicensee . Both the Authorizer and Licensee
fields contain public keys.

One of the main characteristics of the KeyNote policy
definition language is trust delegation. Each Licensee can play
the Authorizer’s role and delegate the trust that he/she gained
by a credential to other actors (Licensee) with new conditions
(without violating the initial conditions) as shown in Figure 2.
Delegation allows the creation of a trust relationship between

BR

ks1 ksNks2

Pubc Subj

Master Key Exchange
Setup Phase

Key Retrieval and Message Decryption

Encrypted Message Transmission
Message Key Distribution

Figure 3: Communication of the five protocol phases.

one Authorizer, such as Pubc, and a Licensee, such as Sub1,
indirectly. This property aligns with the decoupling nature of
Pub/Sub paradigms since Pubc does not need Sub2’s identity.
We restrict the delegation capability to trusted parties only
(i.e., CAs, see Figure 2). In our proposed system, the CA
creates credential CR2 which authorizes CA1 to perform srv1.
Benefiting from the delegation capability, CA1 itself is able
authorize different Subscribers to provide srv1 but in a different
geographical location (i.e., l1 and l2). Any new subscriber needs
to communicate with the appropriate CA to receive a security
credential based on its capabilities. The method how Subj
can prove its capabilities to get such a credential is beyond
the paper’s scope. Whenever Pubc issues CR1, it indirectly
authorizes Sub1 to retrieve the key as long as it requests it
during the valid period (i.e., request time < time1).

It is important to note that Subj will not request the secret
shares from Pubc, but from every ksi. We need to ensure that
each ksi will not deliver the secret shares to any subscribers
unless Pubc authorizes it. Therefore, each ksi considers Pubc
as the Root of Trust (RoT) for every secret share generated
by that Pubc. Subj needs to sign its request and provide all
the credentials that it has. To authorize that request, ksi needs
to validate the signature of the request and find the so-called
”Trust Path” (see Figure 1), which links the requester’s key
(i.e., Subj’s key) with the key of the RoT . If such a path is
found and all the conditions in all credentials that form that
path are satisfied, ksi authorizes Subj’s request and shares
with it the saved share. Otherwise, the request will be denied.

IV. PROPOSED PROTOCOL

Figure 3 illustrates the five phases of our proposed protocol.
These phases are the: setup phase (Section IV-A), master key
exchange (Section IV-B), message key distribution (Section
IV-C), encrypted message transmission (Section IV-D), and
key retrieval and message decryption (Section IV-D). In the
remainder of this section, we will explain each phase in more
detail.

A. Setup Phase
This phase occurs only once during the setup of the system.

Throughout this phase, all KeyStores need to register with the
broker and subscribe to a general topic called msrkt enabling
them to receive messages during the next two phases:

∀ksi ∈ KS, ksi → BR : subscribe(msrkt)

Each Subj needs to have a particular credential from CA to
prove their capabilities and authorization to receive messages
on a specific topic. Also, each Subj needs to register its interest
to receive messages on the particular topic t (Pubc will publish
data on this topic) by sending a subscribe message to the broker.

We will refer to the set of cloud services which are interested
in a topic t as SUBt:

SUBt = {Subj |Subj → BR : subscribe(t)}

Pubc only needs the public key of the domain’s CA (i.e.,
pubKCA) and the public keys of all KeyStores. All this
information will be delivered to Pubc in the form of a
certificate whenever it connects to any BR. Pubc can verify this
certificate based on a pre-programmed list with the intermediary
Certificate Authorities and the root CA. Note that Pubc does
not need to be authorized by any BR. Each Subj can verify
Pubc’s authenticity and validate its authorization, if needed,
by asking Pubc to transmit its certificate.

B. Master Key Exchange

This phase contains two sub-phases: Phase I, which is used to
send the master key, and Phase II to receive an acknowledgment
of receiving the master key.

1) Phase I: Whenever Pubc receives the information
about the existing KS, it creates a set of master keys
(Kmsr) and stores them securely into a list of five tu-
ples 〈IDksi , pubKksi ,msrKPubc−ksi , nci, expT 〉. Each tu-
ple includes ksi’s ID, ksi’s public key, the master key
msrKPubc−ksi , a nonce nci, and the expiration time expT
of this key. Pubc must renew msrKPubc−ksi whenever expT
expires. Pubc uses the public key of each ks to encrypt
the generated master key with a fresh nonce nci. Pubc also
concatenates its public key with the message and sends it to
the broker to be used as RoT :

Pubc : Kmsr = {msrKPubc−ks1 , . . . ,msrKPubc−ksN }
∀ksi ∈ KS, Pubc : ci = Enc(msrKPubc−ksi ||nci, pubKksi)

Pubc : C =
N

||
i=1

IDksi ||ci

Pubc → BR : C || pubKPubc

Upon receiving the message, the broker forwards it to all
registered KeyStores. Each ksi decrypts its part (ci) (based
on the IDksi) of the received message and extracts the
master key and nonce. Each KeyStore uses a list of tuples
L to store the master keys of each publisher. Each tuple
〈H(pubKPubc), RoT,msrKpubc−ks, tid,msgK〉 contains a
hashed value of the publisher’s public key to serve as an
identity for that publisher, the root of trust which will be filled
by the publisher’s public key, the shared master key, a topic
identifier, and a message key to secure messages published on
this topic. Note that each publisher can have multiple message
keys, one for each topic. However, it needs only one master
key. In this stage of the protocol, tid and msgK are empty:

BR→ KS : C || pubKPubc

∀ksi ∈ KS : 〈msrKPubc−ksi , nci〉 = Dec(ci, privKksi)

2) Phase II: After receiving the master key, each ksi needs
to acknowledge the Pubc about Phase I’s success and confirm
that the master key was linked to the Pubc’s public key. Each
ksi forms a message by XORing the received nonce nci and the
hash value of the pubKpubc to avoid the known-plaintext attack.
This message is encrypted using the received msrKPubc−ksi

and sent to the BR, which forwards it to the relevant Pubc
who is waiting for this acknowledgment:

∀ksi ∈ KS :

acki = Enc(nci ⊕H(pubKpubc),msrKPubc−ksi)

ksi → BR : acki

BR→ Pubc : acki

Pubc uses the master key linked to each KeyStore to decrypt
the received acknowledgments. It then calculates the hash
value of its public key hc = H(pubKc) to verify whether the
received nonce is the same nonce that was shared with that
KeyStore during Phase I using the Cmp function:

Pubc :

N∑
i=1

Cmp(Dec(acki,msrKPubc−ksi), hc, nci)
?
= 0

This phase ends whenever Pubc receives the acknowledg-
ments from every KeyStore and verifies the received nonces
successfully. Otherwise, the protocol will not be able to
proceed.
C. Message Key Distribution

After setting up a master key between Pubc and every
ksi, Pubc creates a msgK to encrypt the published messages.
Saving this key or any part of it on every KeyStore will put the
entire system under real danger if at least one of these Key-
Stores gets compromised. Instead of that, we adopt so-called
secret splitting [7, p.70] by splitting the msgK into different
shares and saving these shares securely within the different
KeyStores without disclosing the msgK itself. To achieve that,
Pubc generates N − 1 (N = |KS|) random keys using a se-
cure random number generator rndK1, rndK2, . . . , rndKN−1

where the size of each of these keys is equal to msgK’s size
(i.e., λ). Then, Pubc computes the value of rndKN by XORing
the generated random keys with msgK. Finally, Pubc builds
a message (msgi) by concatenating each of these keys, the
identifier of topic t (ht = H(t)), and the hash value (hc) of
its public key. Pubc shares the produced message with every
KeyStore after encrypting it and its maci using the relevant
shared master key msrKPubc−ksi :
Pubc : msgK = SymKgen(λ)

Pubc : rndK1, . . . , rndKN−1 = Split(N − 1, λ)

Pubc : rndKN = msgK ⊕ rndK1 ⊕ · · · ⊕ rndKN−1

∀rndKi ∈ {rndK1, . . . , rndKN} :
Pubc : msgi = rndKi||ht||hc
Pubc : maci = HMAC(msgi,msrKPubc−ksi)

Pubc → BR : hc
N

||
i=1

ci = Enc(msgi||maci,msrKPubc−ksi)

To control who is able to get this key, Pubc creates a
credential CRpubKPubc

pubKCA
to authorize a CA (directly) and all

subscribers that fulfill certain conditions Conds and trusted by
CA (indirectly) to retrieve the N shares from the KeyStores.
Pubc uses its private key privKPubc to sign this credential:

Pubc : CR
pubKPubc

pubKCA
= Sig(CR

pubKPubc

pubKCA
, privKPubc)

Pubc → BR : CR
pubKPubc

pubKCA

The broker forwards the received message from Pubc to
every KeyStore. Using the received hc, each ksi can determine
which master key it should use to decrypt the message. Each
ksi applies the HMAC function on the decrypted message
(dsmgi) and compare the output with the decrypted mac
(dmaci). Besides that, each ksi extracts dhc from decrypted
messages and checks whether it is identical to the one delivered
in clear text (hc). If verification is passed, ksi updates the
message key if it is existing; otherwise, it creates a new tuple
and adds it to L. Also, CRpubKPubc

pubKCA
is forwarded for every

member of SUBt:

BR→ BR : hc
N

||
i=1

ci

∀ksi ∈ KS :

dmsgi||dmaci = Dec(ci,msrKPubc−ksi)

HMAC(dmsgi,msrKPubc−ksi)
?
= dmaci ∧ dhc

?
= hc

Update(hc, dht, rndKi)

BR→ SUBt : CR
pubKPubc

pubKCA

Deleting any KeyStore after this phase requires re-
transmitting a new msgK while adding a new one will affect
the subsequent transmitted msgKs only.

D. Encrypted Message Transmission

Pubc needs to guarantee the confidentiality of published
messages to prevent unauthorized subscribers from disclosing
them. At the same time, it wants to ensure that the message
was not manipulated. To achieve that, Pubc uses the HMAC
function to create macm for each published message (m). Then,
Pubc encrypts the message and macm using msgK that was
generated in the previous phase. Pubc transmits the encrypted
message (Cm) to the broker:

Pubc : macm = HMAC(m,msgK)

Pubc → BR : Cm = Enc(m||macm,msgK)

E. Key Retrieval and Message Decryption

BR forwards the encrypted message and credential to every
Subj in SUBt. To decrypt that message, each Subj needs to
communicate with the KeyStores to retrieve the N secrets to
reconstruct the actual msgK. It is important to note that this
communication does not need to go through BR. Each Subj
in SUBt forms a request R which contains the topic identifier
tid, the publisher identity hc which can be calculated based on
the information of a credential, and a nonce ncr. Subj uses its
private key privKSubj to sign the ncr, tid and hc and includes
the signature in the request. Then, Subj sends the R with
its public key pubKSubj and a list of all credentials CRSubj
(m = |CRSubj |) to prove that CA trusts the Subj and it fulfills
all conditions stated in CRpubKPubc

pubKCA
(CRpubKPubc

pubKCA
∈ CRSubj):

BR→ SUBt : Cm
Subj : R = tid||hc||ncr||Sig(tid||hc||ncr, privKSubj)

Subj → KS : R||pubKSubj ||CRCASubj
Each ksi receives the request, verifies the signature of R as
well as all provided credentials in CRSubj . If all signatures

are valid, ksi searches in L to find the tuple that contains the
secret key using received tid and hc. Then, ksi extracts The
RoT (i.e., pubKPubc) and checks weather it can find a path
of trust links pubKSubj with pubKPubc based on credentials
provided by Subj . If so, ksi encrypts the randKi using the
pubKSubj and sends it to back to Subj :

∀ksi ∈ KS :
m∑
i=1

V er(CRi, CRi.Authorizer)
?
= 0;CRi ∈ CRSubj

V er(R, pubKSubj)
?
= 0

ksi → Subj : ci = Enc(rndKi, pubKSubj)

Subj decrypts the received message and extracts rndKi. By
XORing all N received shares, Subj reconstructs the msgK
and uses this key to decrypt the message and to check its
integrity:

∀ksi ∈ KS, Subj : rndKi = Dec(ci, privKSubj)

Subj : msgK = rndK1 ⊕ rndK2 ⊕ · · · ⊕ rndKN

Subj : dmsg||dmacm = Dec(Cm,msgK)

Subj : HMAC(dmsg,msgK)
?
= dmacm

V. PROTOCOL ANALYSIS

A. Informal Security Analysis
This section provides an informal security analysis of our

protocol based on the assumed threat model (see Section II-B).
During the phase of exchanging the master key, external attacks
and a malicious broker need to access or compute the private
key of every KeyStore to decrypt C and extract msrKPubc−ksi .
However, using RSA as an encryption algorithm and choosing a
sufficiently large modulus prevent the attackers from extracting
the private keys. Similarly, attackers will not benefit from
acki (during Phase II) or ci messages (during the message
key distribution) without having msrKPubc−ksi . It is not
feasible for attackers to break the protocol by targeting the AES
symmetric algorithms itself since it is considered impervious
to all attacks. Also, by choosing expT and changing the
master key frequently, the process becomes even more difficult.
One way to get msgK and decrypt Cm maliciously is by
compromising the N KeyStores (or if all of them decide to
collude with an attacker). Even though such a case is possible,
it is unlikely, especially when we use many KeyStores. It is
important to mention that if one KeyStore gets compromised
and/or refuses to follow the protocol honestly (i.e., DoS), Subj
will not be able to reconstruct msgK. Although we are not
solving this issue in this paper, we already have some solutions,
such as using a different schema for secret sharing or simply
using multiple KeyStores that hold the same share. Adopting
these solutions will be considered as future work.
B. Implementation and Performance Evaluation

1) Implementation and Test-bed: We evaluate our proposed
protocol’s performance characteristics only from the publisher’s
side. End-to-end performance evaluation will be considered
as a future work. We used two baseline systems to compare
our approach to. The first one is a system without any security
(we refer to it as clear). The second one uses SSL/TLS to

Phase Operation Time (ms)

Phase I

Connect() 131.20
Enc(msrKPubc−ks1 ||nc1, pubKks1) 13.38
Send(C||PubKc) 0.38
Total of above + other operations 156.27

Phase II
Receive(ack1) 18.93
Dec(ack1,msrKPubc−ks1) 0.15
Total of above + other operations 19.09

Phase I +II Total 175.36

Table I: Time performance of Phase I and II using 1 ks (N = 1).

1 2 3 4 5
0

100

200

Number of KeyStores

Ti
m

e
(m

s)

Phase I Phase II Total

Figure 4: Time required to exchange msrK(s) with N KeyStores.

secure the communication between the publisher and broker as
recommended by the MQTT standard (we refer to this system
as SSL). We have implemented our proposed protocol using
the C programming language. The Publisher, KeyStore, and
Subscriber were implemented using the Eclipse Paho MQTT
client. We also used the open-source Mosquitto broker without
any changes. All cryptography operations were implemented
using the OpenSSL library. We used a 128-bit AES-CBC key
for the master key and session keys and 1024-bit RSA keys for
public/private keys. The publisher was running on a Raspberry
Pi 3 Model B+, which includes a Broadcom BCM2837B0 SoC
based on a 1.4 GHz 64-bit quad-core ARM Cortex-A53 CPU,
1 GB RAM, and a BCM43143 WiFi chip. KeyStores were
running on another Raspberry Pi 3 Model B+. The broker was
installed on a laptop running 64-bit Ubuntu 20.04 with a 1.9
GHz Intel Quad-Core i7 CPU and 16GB RAM.

2) Performance Analysis:
a) Master Key Exchange: Table I details the performance

evaluation of the main operations during master key exchange
phase. The table shows that the time to connect with the
broker consumes almost 80% of the entire time of this phase,
while the asymmetric encryption of the master key depletes
around 8% only. It is critical to mention that the time to
receive the master key(s) by the KeyStore(s) and to receive
the acknowledgment(s) by Pubc is variable and depends on
the network’s latency and bandwidth. Figure 4 presents the
performance evaluation of the same phase when multiple
KeyStores are used. The figure shows that the change of time in
Phase I is very minimal. The most introduced overhead occurs
in Phase II since Pubc needs to receive one acknowledgment
from each ks. The more KeyStores are used, the more time is
required to receive all acknowledgments by Pubc. Handling
these acknowledgments introduces negligible overhead since
we use symmetric decryption to decrypt each one of them.

b) Message Key Distribution: Figure 5 represents the
required time to establish a connection between the Pubc and
BR using one KeyStore (N = 1) and to setup a msgK. The
figure also shows a comparison with the other baseline systems.
For each system, we repeat the measurement 600 times. As
expected, T connclear was the fastest. The measurement also shows

100 150 200 250

T conn
clear

T conn
SPPS

T conn
SSL

Time (ms)
Figure 5: Time to setup a connection between Pubc and BR (N = 1).

Operation Time (ms)

Connect() 131.20

Sig(CR
pubKPubc
pubKCA

) + send(CR
pubKPubc
pubKCA

) 13.30

Enc(msgK,msrKPubc−ks1) + send(.) 0.26
Total 144.76

Table II: Detailed time performance of T conn
SPPS using 1 ks (N = 1).

1 2 3 4 5

0.4

0.6

Number of KeyStores

Ti
m

e
(m

s)

Figure 6: Time required for encrypting and sending shares.

that T connSPPS is executed 70% faster than T connSSL and 38% slower
than T connclear . This overhead comes from the different operations
during the connection setup, which includes signing a credential,
encrypting share(s), connecting with a broker, and sending the
encrypted share(s) and credential. Table II details the time
consumed by each of these operations.

To show the effect of using multiple KeyStores, we repeat
our test using a different number of KeyStores each time, and
we got the result presented in Figure 6. In this figure, we
do not include the times required to connect with the broker
and sign the credential since these functions occur once, as
they will perform almost the same regardless of the number
of KeyStores. We only consider the time required to encrypt
N shares and send them to the broker. Results show that the
increase in the time is around 0.1ms for each new ks.

c) Encrypted Message Transmission: Figure 7 shows the
introduced overhead of encrypting and sending different sizes
of messages, as stated in the horizontal axis. For each message
size, we repeated the measurement 100 times. The figure shows
a comparison between SPPS and clear systems only since
using SSL will introduce almost the same overhead as our
system if the same encryption algorithm and key length were
chosen. The Figure shows that using bigger message sizes will
introduce more overhead. Based on our results, the introduced
overhead is around 0.2ms for each 5 kB.

Summary: It is important to note that the overhead of
setting the master key(s) occurs once. Our proposed system
also introduces 70% less overhead compared to SSL when
Pubc needs to (re)-establish the connection with the broker.
Moreover, even though we tested our proposed system using a
platform with limited resources, it outperforms other solutions
that provide end-to-end security over the Pub/Sub model such
as ABE by orders of magnitude. A publisher needs around 1 s
to encrypt a 128-bit key using ABE despite that it was running
on a laptop with 1.60GHz Quad-Core i7 CPU [5].

VI. RELATED WORK

Securing the Pub/Sub system is a common goal in the IoT
domain [9]. Pal et al. [10] proposed a system for a content-based

1 5 10 15 20 25
0

0.5

1

1.5

Message size (kB)

Ti
m

e
(m

s) cleartext SPPS

Figure 7: The required time for encrypting and sending data.

Pub/Sub model where Ciphertext Policy (CP)-ABE was used
to encrypt published messages. Only subscribers who fulfill
the access policy can decrypt that messages. Ion [11] proposed
the use of the ABE to encrypt a symmetric key that is used
to encrypt the data instead of encrypting the data itself. Only
subscribers with sufficient properties can get the symmetric
key and consequently decrypt the message. Although these
solutions ensure both data authorization and confidentiality,
they come with a massive overhead resulting from pairing
operations needed in ABE.

VII. CONCLUSION

Using the Pub/Sub model to support V2C communication
seems promising if security concerns are solved. This paper
proposes a secure policy-based Pub/Sub model that allows
vehicles to encrypt and control access to the published
messages. Our solution leverages semi-honest KeyStores to
guarantee the end-to-end confidentiality of V2C communication
without trusting the brokers. Experimental results show that
our solution outperforms alternative state-of-the-art methods
such as SSL/TLS and ABE. Based on that, our solution is
considered as a very efficient method to ensure end-to-end
secure communication using Pub/Sub model.

REFERENCES

[1] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security issues and
requirements for internet-scale publish-subscribe systems,” in Proceedings
of the 35th Annual Hawaii International Conference on System Sciences.
IEEE, 2002, pp. 3940–3947.

[2] R. A. Nofal, N. Tran, C. Garcia, Y. Liu, and B. Dezfouli, “A Compre-
hensive Empirical Analysis of TLS Handshake and Record Layer on IoT
Platforms,” in Proceedings of the 22nd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2019.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). IEEE, 2007.

[4] M. Ion, G. Russello, and B. Crispo, “Design and implementation of a
confidentiality and access control solution for publish/subscribe systems,”
Computer networks, vol. 56, no. 7, pp. 2014–2037, 2012.

[5] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance Evaluation
of Attribute-based Encryption: Toward Data Privacy in the IoT,” in 2014
IEEE International Conference on Communications (ICC). IEEE, 2014.

[6] M. Blaze and A. D. Keromytis, “The KeyNote trust-management system
version 2,” 1999.

[7] B. Schneier, Applied cryptography: protocols, algorithms, and source
code in C. john wiley & sons, 1996.

[8] ISO, “Information technology – Message Queuing Telemetry Transport
(MQTT) v3.1.1,” International Organization for Standardization, Geneva,
Switzerland, ISO ISO/IEC 20922:2016, 2016.

[9] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Confidentiality-
preserving publish/subscribe: A survey,” ACM computing surveys (CSUR),
vol. 49, no. 2, pp. 1–43, 2016.

[10] P. Pal, G. Lauer, J. Khoury, N. Hoff, and J. Loyall, “P3S: A privacy
preserving publish-subscribe middleware,” in ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 2012, pp. 476–495.

[11] M. Ion, “Security of publish/subscribe systems,” Ph.D. dissertation,
University of Trento, 2013.

	Introduction
	System and Threat Model
	System Components
	Threat Model

	Policy-based Trust Management
	Proposed Protocol
	Setup Phase
	Master Key Exchange
	Phase I
	Phase II

	Message Key Distribution
	Encrypted Message Transmission
	Key Retrieval and Message Decryption

	Protocol Analysis
	Informal Security Analysis
	Implementation and Performance Evaluation
	Implementation and Test-bed
	Performance Analysis

	related work
	Conclusion
	References

